PRACTICAL: 3

Focal Length of Concave Mirror

AIM: \quad To determine the focal length of concave mirror.
APPARATUS: Concave mirror optical bench, object and image pins, meter rule.
FIGURE:

PROCEDURE:

1) Determine the approximate focal length of the given concave mirror by obtaining on the wall the image of a distant tree.
2) Mount the given concave mirror on a stand and fix one pin on the other stand, then place them on the optical bench as shown in the diagram.
3) Now keep the object needle O in front of the mirror M and beyond C. Take a second needle I and place it in between the mirror and the object needle. Move the is needle I, until there is no parallax between the image of O and I on moving the eye from side to side. Measure the distance $M O(\boldsymbol{u})$. Also measure the distance $M I(\boldsymbol{v})$. This gives the observed object and image distance.
4) Very the position of the object bringing it progressively closer to the mirror taking care to see that a real image is obtained in each case. This will be so if object is at a distance greater than the focal length from the mirror. Repeat the above mentioned procedure to find the value of $M O$ and MI in each case. Take atleast six observations in this manner.
5) Plot a graph v vs u. this will be curve. Draw a line $O P$ making an angle of 45°. with either axis and meeting the curve at point P.

OBSERVATION:

i) \quad Range of Optical bench $=$ \qquad cm
ii) Least count of Optical bench = \qquad cm
iii) Rough focal length of concave mirror \qquad $. \mathrm{FL}=$ \qquad cm .

OBSERVATION TABLE:

Sr. No.	Position of the mirror $\boldsymbol{M} \mathbf{c m}$	Position of the Pin $\boldsymbol{O} \mathbf{c m}$	Position of the Pin $\boldsymbol{I} \mathbf{c m}$	Object Distance $\boldsymbol{u} \boldsymbol{c m}$	Image Distance $\boldsymbol{v} \boldsymbol{c m}$
1					
2					
3					
4					
5					

GRAPH: v Vs u (in cm)

CALCULATION:

From Graph Co-ordinates ($\boldsymbol{u}, \boldsymbol{v}$) of point P is.....

$$
\begin{aligned}
& (u=\ldots \ldots, v=\ldots \ldots) \\
& 1=22
\end{aligned}
$$

RESULT:

> Focal Length of given Concave Mirror = cm.

Viva:-

1. What is a spherical mirror?
2. What is a real image?
3. For what position of object, the image formed by a concave mirror is magnified and erect?
4. Define the terms pole, principle axis and centre of curvature with reference to a spherical mirror.
5. What is the relationship between focal length and radius of curvature of a spherical mirror.
6. What is the difference between focus and principle focus?
7. Why the focal length of concave mirror is negative?
8. Why a driver doesn't use a concave mirror as a rear view mirror?
9. How will you distinguish between a plane mirror, a concave mirror and a convex mirror, without touching them?
10. What type of mirror is used to obtain a real image of an object?
