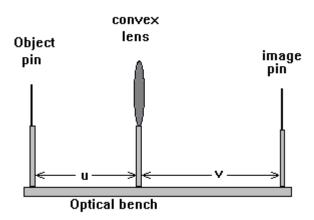
PRACTICAL:8


Focal length of Convex lens

AIM: To determine the focal length of convex lens.

APPARATUS: Convex lens, optical bench, objects and image pins, meter rule.

FURMULA: Focal length of convex lens.... $f = \frac{uv}{u+v}$ cm

FIGURE:

PROCEDURE:

- 1) Obtain a sharp image of a distant object on the wall of the laboratory with the convex lens. The distance between the convex lens and the image, measured roughly with a meter rule would give the approximate focal length of the lens.
- 2) Arrange the lens in lens holder of the optical bench. Now place the object pin. Object pin should be at zero.
- 3) Move the image pin and adjust its position till the parallax between the image pin and object pin is removed.
- 4) Record the distance *u* between *object pin and lens* and distance *v* between *image pin and lens*.
- 5) Repeat the process three times by changing the object distance u.
- 6) Calculate focal length of given convex lens with formula.

OBSERVATION:

- *i*) Rough focal length of convex lens......FL = _____ cm.
- *ii*) Range of Optical bench = ____ cm
- *iii*) Least count of Optical bench = _____ cm.

OBSERVATION TABLE:

Sr. No.	Position	u cm	v cm	u + v cm	uv cm	$f = \frac{uv}{u+v} \text{cm}$	Mean f cm
1	Between F and 2F						
2	Between F and 2F						
3	On 2F						
4	Beyond 2F						
5	Beyond 2F						

RESULT:

Focal Length of given Convex Lens = _____ cm.

VIVA:-

- 1. What is a real image?
- 2. For what position of object, the image formed by a convex lens is virtual and magnified?
- 3. Give the application for each position of object listed above for a convex lens used in daily life?
- 4. Mention the size of the image formed for the each position of object listed above?
- 5. What are the different types of convex lenses available?
- 6. Explain why convex lens is called converging lens?