Numericals -Real and apparent depth

Numerical Problem -1

1. A glass block 3.0 cm thick is placed over a stamp .Calculate the height through which the image of the stamp is raised. Refractive index of glass is 1.54.

Solution: ${ }^{\mathrm{a}} \mu_{\mathrm{g}}=\frac{\text { Real Dept } h}{\text { Apparent dept } h}$ or $1.54=\frac{3}{\text { Apparent dept } h}$
Apparent depth $=3 / 1.54=1.94 \mathrm{~cm}$
Height through which image is raised $=3-1.94=1.06 \mathbf{c m}$

Practice Problems 3 :

1. A coin is placed at a depth of 15 cm in a beaker containing water. The refractive index of water is $4 / 3$. Calculate height through which the image of the coin is raised.
2. The floor of a water tank appears at a depth of 2.5 m . If the refractive index of water is 1.33 , find the actual depth of water.
3. The depth of water in a bucket is 40 cm but its bottom appears to be raised by 10 cm . What is the refractive index of water?
4. A glass ($\mu_{\mathrm{g}}=1.5$) block of thickness 2.7 cm is placed on a postage stamp. What would be the apparent depth of the stamp if it is viewed (i) normally and (ii) obliquely above the glass slab?(ii)[1.8cm]
5. A small air bubble in a glass slab appears to be 2.4 cm from the surface.

Calculate the real depth of the bubble if the RI of glass $=1.5$

Numerical Problem 2:

1. A postage stamp placed under a glass, appears raised by 8 mm . If refractive index of glass is 1.5 , calculate the actual thickness of the glass slab.

Solution: Let the real thickness of glass $=x$
Apparent thickness $=(x-8) \mathrm{mm}$
We know $\mu=\frac{\text { Real dept } h}{\text { Apparent dept } h}$ or $1.5=\frac{x}{x-8}$
$1.5 x-12=x$ or $x=24 \mathrm{~mm}$

Practice Problems:

1. A stone placed at the bottom of a water tank appears raised by 80 cm . If the refractive index of water is $4 / 3$, find the actual depth of water in the tank. [320 cm]
2. A postage stamp kept below a rectangular glass block of refractive index 1.5 when viewed from vertically above it, appears to be raised by 7.0 mm . Calculate the thickness of the glass block.
[2.1cm]
